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ABSTRACT

A method for the calculation of turbulent shear flows by
an invariant modeling closure of the equations for the second-
order correlations of fiuctuating quantities in a turbulent
medium is described. The relatlionship of the primary computa-
tional scale used in this model and the longitudinal integral
scale of the turbulence under consideration is determined. With
these results in hand, a technique 1s described by which it
should be possible to determine the intensity and integral scale
of turbulence measured by instrumented aircraft when only partial
spectra are available. This 1s possible when the distributions
of mean wind velocity and temperature in the atmosphere in the
vicinity of the tests are available. Preliminary calculations
using the method for a case when both the intensity and integral
scale of turbulence were known yielded very good agreement
between computed and experimental results.
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I. INTRODUCTION

Some time ago, the senior author of this paper proposed an
approach to the computation of turbulent shear flows (Ref. 1)
which, because of it; generality, gave promise of allowing one
to make calculations of turbulent atmospheric and vortex motions.
In 1969 this method. in its earliest Form, was applied to the
calculation of the generation of turbulence in the atmosphere
(Ret'. 2). The resvits of these calculations were intriguing
enough to warrant refinement of the method and its further appli-
cation to calculations of the generatlon of atmospheric turbulence.
During fiscal year 1971 support was obtained from two socurces
towards these two ends. A moderate level orf support was obtained
from NASA under Contract No. NASW-1868 for further refinement of
the method and a somewhat higher level of support was obtalned
from the Alr Force for development ¢f the method for application
to a specific problem faced by the Flight Dynamics Laboratory;
this report discusses the results obtained for tie Alr Force.
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IT. STATEMENT OF THE PROBLEM

A problem that has faced and continues to face the Flight
Dynamics Laboratory's Design Criteria Branch is that: of deter-
mining two fundamental characteristics of atmospheric turbulence
under any given set of conditions. These characteristics or
parameters, which define in a gross way the structural response
of aircraft to atmospheric turbulence, are the root mean square

‘ of the vertical component of the turbulent velocity fleld o

and an integral scale of the turbulent velocity field L . Yn
general, it is assumed, for work concerned with structural problems,
that the turbulent velocity fileld 1s sufficlently isotropic so

that only two integral scales must be considered. One is the
longitudinal integral scale L defined by :

L=L, = — (u (X)u,(x + x ) dx, (1)
M Cugu >(x)f ! ? SIS

The other 1s the transverse integral scale L33

N S
33 <uéu§>(£)

It is well-known from the theory of isotropic turbulehce (Ref. 3)
that these scales are related; namely,

L J" (ué(&)ué(i + x,)>dx, = L,, (2)

L = Ly = 2Lg3 = 2Ly, | (3)

For the calculations involved in practical structural design, it
has been assumed that Eq. (3) 1is valid, so that the problem facing
the structural designer is that of determining O ‘and L for
any glven atmospheric situation.

In principle, the determination of these two parameters is
straightforward. In practice, however, the task is impossible in
many cases because accurate measurements of turbulence intensity
are not available over a wide enough range of wave numbers.
Consider the spectrum of turbulence shown in Figure 1. This
spectrum, taken from Ref. U, represents the power spectral
density ¢,(Q) of the turbulent vertical velocity w' measured
in a thunderstorn, plotted against the reduced frequency Q .
This spectrum is typical of many atmospheric spectra that have
been obtained. The trustworthy portion of the spectrum exhlbits

a ¢ ~Q -5/3 behavlor throughout. This behavior, whlle 1t 1is
gratnying to students of turbulent motions, does not permit one
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to estimate elther the integral scale or the intensity of the
turbulence. It has been pointed out by Houbelt that, if the
actual spectrum ic a von narman spectrum, namely,
oL 1 + 8 (1.30010)°
¢ = =

L O S A1) Lk R

s
1]

~~

one can infer from a record such as that shown in Figure 1 oniy
the following relationship between the intensity and the integral
scale:

07 = e

w 0,521 °

where Q¥ 0% represents any point on the minus five-thirds slope
portion of the spectrum. Two spectra satisfying Eq. (4) are shown
in Figure 1. One spectrum is for o, = 32.33 ft/sec and L = 5609
feet, while the second is for o, = 25.66 ft/sec and L = 2800 feet.
Thls example 1lllustrates the difficulty of finding the
quantities oy, and L when only partial spectra, such as the one
Just discussed, are given. The study supported under the present
contract was an effort to develop a method by which it might be
possible to estimate both o, and L from partial spectra
when the profiles of mean wind and atmospheric temperature were
available.

The technique proposed was the following. The method of
invariant modeling permicts, as 1s shown below, the computation of
the turbulent structure of the atmosphere if the local mean wind
and temperature profiles are known. This computation is possivle
if a scale parameter A1 , related to L , is assumed., The
relationshlp between computed o and assumed L is different
than that given in Eq. (5). Thu¥, if the relationship of L and
A} 1is known, 1t i1s possible to determine both Lll and S by

finding the intersection of the curve representing iq. (5) and
of the curve c(htained from the results of the computations.

_ The study undertaken for the Alr Force consisted of two
parts. First, detalled investigations were carried out in which
computations of turbulence in a free shear layer and in an axially
symietric fiee jet were made. In these studies, the local value
of A1 was found In each cagse that best veproduced, within the

abllity of the mathematical model, the turbulent structure of the
particuler flow under investigatlion. This wag possible because
of the falrly large amount of detalled information ccncerning the
turbulent structure of these two flows. The local value of A
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was then compared with the local value of L as measured in each
case., In this way, it was determined that the following relation-
ship between L and Al 1s representative:

Al = 0.6L
Second, with this result 1n hand, a computation was carried out,
as an initial test case, to see if the method discussed above for
recovering atmospheric scales and intensities was plausible.
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III. DESCRIPTION OF AN INVARIANT MODEI. OF TURBULENT SHEAR LAYERS

The equation for the time-independent mean velocity in an
incompressible turbulent medium was given many years ago by
Reynolds (Ref. 5). It is

—i _ _1 6
paly g = By + (T - eeltup) )

In this paper, bars over a quantity or angular brackets around
a quantity indicate average values of that quantity while primes
indlcate the instantaneous fluctuation of.the quantity from its
mean value. The mran molecular stress Ti is given by

73 = Gk (5 i, ;)

Ty =egltu (ui,k Uy (7)

The second-order correlation of the velocity fluctuations that
appears in Ej. (6) represents the transport of momentum by turbulent
eddies and is called tre Reynolds stress. An equation for this
second-order tensor wias also given by Reynolds. It is, for steady
flow,

1

od P LN - Jrong - J
pu <u£u£>’J pCu dﬂ>ui,3 plu upuk’J o<u uiup

- ™ -
Cujp™™ o= upe'> v (piluy o+ ug 4>

4

.. mn _ mn ~
g <u{u£>,mn 218 <ui)mu&,n3 (8)

In the past, 1t has been customary to carry out investigations
of turbulent shear flows by means of Eq.{6). In these studies
the unknown second-order veloclt, correlation term was modeled
in terms of the mean veloclty and a length. Computations made in
thls manner form the vast bul.c of the literature on turbulent shear
flow calculatlions tc¢ the present time. The methods that are now
in use employlng this type of modeling, having evolved over a period
of many years, are exceedingly useful and enough empiricul data
have been amassed to enable one to calculate solutions to a wide
variety of engineering problems with a great dea. of confidence,
There are, however, a number of problems facing engineers today
which require the calculation of turbulent shear flows for which
there 1s nc exlstling body of experimental data. Two flows which
come readlly to mind are the generation of turbulence and turbulent
transport correlatlons Ly the earth's atmosphere and the decay
of a turbulent vortex, In the case of these two flows, we may ask
ourselves the following questions: "Is there not a somewhat more
basic method of computing turbulent transport phenomena than the

6
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eddy viscosity or mixing length models presently in use?" "Can

not such a method permlt us to generalize the experimental results
that presently exist so as to estimate the nature of turbulent
flows that have not yet been investigated experimentally?" The
answers to these two questions are not as straightforward as one
would like. In answer to the question as to whether there is a
more baslc method, the reply must te: Yes, but the real difficulty
comes when one tries to establish just how much more fundamental
the proposed new method 1is to be. If a new method is truly more
fundamental, then it will allcw better estimates of unknown flows
than can be made by older techniques. It is fair to say, at the
present time, that there 1s considerable hope among those who practice
the art of calculating turbulent shear flows that the new methods
now being developed, of which the method to be described here is
but one, take into account enough physics that is not contained

in older models so that a technological advance can be made. It

is as yet too early in the history of these new methods to make any
strong statement as to just how much more powerful they are than
the older methods.

If one wishes to make use of both Egs. (6) and (8) in computing
turbulent shear flows, the first step must be a choice of models
for those terms in Eq. (8) which are not expressed in terms of the
mean velocity or the second-order velocity correlation. The terms
which must be modeled are

(1) the pressure-strain correlation in the tendency-towards-
isotropy term, namely, (p'(u' + uk i)>

(2) the third-order tensor in the velocity diffusion term,
namely, {u! ujuk> ;

(3) the pressure velocity correlation in the pressure diffusion
terms, namely, <|4ip'> ;

(4) the general visccus dissipation term aigmn<ui mu& q)
3 3

There are many ways in which a modeling of the above-noted
terms may be accomplished. We have tried, for our initlal investiga-
tion, to take as simple a model as possible for each term. We
have then attempted to determine by calculation the adequacy of
the chosen model and the sensitivity of the calculated results
to the particular cholce of model.

To date the following models have been investigated to some
extent,

(1) For the tendency-towards-isotropy term, we choose, following
Rotta (Ref. 6), the following model:

orlug (o +up 4> = Al(“i W - &y 5 (9)

f
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and Ay 1s a scalar length assoclated with the tendency towards
isotropy and is to be identified. More complicated models of
this term have been discussed by Chou (Ref. 7) and by Hanjalic
and Launder (Ref. 8). To date, we have had considerable success
using the simple Rotta model given above and, in line with our
philosophy of using the simplest possible model that will give
reliable results, we have confined the majority of our computa-
tional studies to the use of Eq (9).

(2) For the velocity diffusion term, we must model <u'u!uﬁ> .
The simplest covarliant tensor of rank three that is symmetri% in
all three indices that we can form out of the second-order
correlations “s

<u{u3>,k + <u5u&>}i + <u&ui>,J

This expression has all the tensor and symmetry characteristics
required of our model., To make it dimensionally correct, the above
expression must be multiplied by a scalar velocity and a scalar
length. The simplest scalar velocity we can form from the second-

1
order correlations isy/ ¢ u™ u%} = q , 8o we model the tensor

< ujuiup > as

<u_iu3ug{>= -4q [(uiuj > <u3u1}i>’i + <uf{u{>,3] (11)

where Ao 1s a scalar length associated with velocity diffusion
and 1s also to be identified by matching experimental results.

(3) The pressure velocity correlation <1)Hﬁ;> in the pressure
diffusion term is modeled by analogy with the velocity diffusion
term as

<p'u}'{>=-pA3q<um'ﬂf{>,m (12)

In our work, in order to cut down the number of parameters in our
turbulence model, we have considered only two speclal cases of

Eq. (12). We have considered the case A3 = A2 and the case where
<p'u&> =0, 1.e., the case A3 =0 ,

(4) We have considered two models for the expression

gmn<:ui u& n> appearing 1n the viscous dissipation term:
] H

a
lulud
(a) g <ug pup > ——i—}-— (13)
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and

(b) o e uy e D=

In both these models, A is a dissipative length scale. The argu-
ment for choosing the latter expression is that it is expected

i that the turbulence will be almost 1sotropic in that part of the
spectrum responsible for dissipation of turbulent kinetlic energy.
Thus, one would expect the dissipation to bz almost isotropic even
if the turbulence itself is not. PFurther, there is experimental
evidence that the loss of shear correlation by viscous action 1s
relatively much smaller than the loss of kinetic energy by viscous
action. In our initial computations using Eq. (14) as a model of
dissipation, we experienced some difficulties in obtaining scolu-
tions. There was a tendency for solutions to develop with negative
values for the mean square velccitles when the turbulence became

: very nonisotropic. This tendency was overcome by the use of Eq.

g (13) for the dissipation model. This model does not have a large

: effect on the development of the shear correlations because the

! primary contribution to loss of shear with thls model 1s not the

; dissipation term but the tendency-towards-isotropy term. Although
the whole question of modeling the dissipation term is still under
investigation, the work reported here was carried out using Eq.
(13), for the reasons stated above.

SRy

st s S e s A L =

In the models glven above, we would expect that the scalar
lengths Al’ A2, and A3 would all be related to the local integral

scale of the turbulence. These lengths are, in turn, related to

: the local scale of the mean motion for the flows we shall investi-
gate here, and we make the assumption in the computations we will
discuss presently that Al’ A2, and A3 are all proportional

to some local characteristic length o
under consideration.

char of the mean motion

We wlll expect the length appearing in the dissipation model
to be related to the mlcroscale of the turbulence which, in turn,
must be related to the integral scale via a Reynolds number in
such a way that production of turbulence is balanced to a large
extent by dissipation.

If the models we have Just discussed [Egqs. (9) and (11)~-(13)]
are substituted 1in the baslc equation for the second-order veloclty
correlations [Eq. (8)], the resulting equation, taken together
with the momentum and continuity equations, makes & closed set
(see Appendix A). When thils set is reduced to boundary layer form,
it is found to form a parabolic system (sce Appendix B).

[OOSR
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This set of equations will admit similarity solutions at
high Reynolds numbers as well as permit calculations of turbulent
flows near walls, if one makes the following choice of the relation
between the length scales:

Ay =10 har (15)
Ay = Cohy = 400 pan (16)
A3 = C3A1 = Cééchar (17)
and
where A= AJ/a + Do Re (18)
1 Al

For self-similar free turbulent flows, the structure given
above 1s all that is needed to compute a turbulent shear layer
or a free Jet, provided the five constants, C1s Cpo 03, a , and Db

are given, To find these constants, we must resort to the compari-
son of calculated flow fields with experimental results.

If we wish to compute a boundary layer flow, we must consider
an additional problem. When a wall is present in a shear flow,
we wilsh to apply the boundary condition at the wall that

Cuu mg = 0

where 2z 1s measured normal to the surface. In addition, there

should be no diffusion of (uiuﬁ) through the surface, so that

5‘<u{u&>/5z =0 at z =0 . Thus, 1t is reasonable to assume
that near the wall

<uiu&> = Aikzl+n (20)

where Aik is a constant and 7 1s a posltive constant. But if

there 1s no diffusion through the well, then all that 1s diffused
towards the wall by viscosity at 5 = € 1s dlssipated in the region
between 2z =€ and 2z =0 ., (It is ecasily verified that all other
terms in the model equation for <uiu& are neglible if € 1is

small enough.) Thus,

2uf€<uiuf‘> ir o LL(Xu{u{?)
o] XE z

oz

=€

10
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or, using Eq. (20)
ezlﬂ] -
2 -——,:—dZ = (1 + '{])Gl
o

If this relation is to hold for all € =+ 0 , we must have
do= QZ (21)

where

no

2

¢ =TT+ o

Thus, near a solid surface, we will always assume, in applying our
model, that Eq. (21) holds in the reglon near the wall.

It is convenient to express this result in terms of A

Near a wall, Eq. (18) becomes 1
A= MNVE (22)
Using Eq. (21), we may write
Ay =avaz (23)

Thus, for boundary layer flows, a 1s another number which must
be found from experimental results.

In our first attempts to construct a model of turbulent shear
flows (Refs. 9 and 10), the following assumptions were made to
construct the simplest possible model of boundary layer flows:

(1) It was assumed that all the large lambdas associated
with inviscid modeling were equal, 1.e., Al = /\.2 = A3 = A,
(2) It was assumed that o was equal to one.

(3) In the outer portion of a boundary layer, A was taken
to be a constant c¢; times 6 99 (o 99 is the value of z for

which U is 99% of the free stream velocity). This value was
assumed to hold, independent of 2z , as the wall was approached,
until A became equal to va times =z . For smaller values of 2 ,
A was taken equal tova z .

With these assumptions, the boundary layer forms of Egqs. (6)
and (8) with appropriate modeling (Appendix B) were solved with
various cholces for the parameters a , b , and ¢, = A/ 99 to

produce a developing turbulent boundary layer on a flat plate.

11
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It was determined at that time that the following choice of
parameters

¢q = A/cS.99 = 0.064

1
o
C-’ﬁ

(24)
b = 0.125

yielded & fair representation of a turtulent boundary layer. The
mean velocity profile and the behavlior of skin friction with
Reynolds number were adequately rep.esented. The distributions
of the second-order correlations within the boundary layer were
reasonable.

The results of this original parameter search were used to
compute a number of other turbulent flows in order to demonstrate
the method (Refs. 9 and 10),

Before proceeding with further applications, it was considered
necessary that a more detalled parameter search should be made,
In particular, two free turbulent flows - the free jet and the
free shear layer - should be calculated to determine the values of
the parametérs ¢, , ¢, , & , and b that would best fit the exper-
imental results fgr bo@h flows. (The equations for the free shear
layer are the same as those for the boundary layer given in Appendix
B. The equations for the axlally symmetric free jet are gilven
in Appendix C.) The value of ¢ being the ratlo of A to some
arbitrarily defined characterist}c length in each case i% not an
invariant of the problem and was to be chosen, with fixed values
of the other parameters, to obtain best results in each case.
Once these studies were complete, the model would be used to compute
turbulent boundary layer flows s¢ that, by comparison with experimental
results, values for ¢ and @ could be made for this flow.
Hopefully, all flows c%uld be described in a reasonable way by a
single c¢holce of the basic model parameters c¢, , ¢o , 8 , b ,
and (where appropriate) a@. The values of locag A 3 determine
from the values of ¢ in each case were then to &e gompared
with the local magnit&de of the integral scale L 1in each case.
If 1t was found that the value of ¢y represented a choice that
amounted to

A = const L = BL (2%)

then 1t would be assumed that a reasonably invariant model had
been determined.
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IV. THE SEARCH FOR NEW MODEL PARAMETERS

Qur search for a new model of turbulent shear layers began
with an attempt to describe the axially symmetric free jet with
the original turbulence model obtained for a boundary layer flow.
This model, as mentiorned in the previous section, was one for which
Al = A2 = A3 = A . This cholce leaves three parameters to be deter-

mined. They are c¢; = A/D and the two constants a and b

in the expression char

A= ANa + Do ReA

The method of searching for values for these parameters was as
follows. The eguations for a free Jet were programmed so as to
solve the system of equations for a free jet developing in the

axial direction. At an arbitrary initial station in the axial
direction, a mean velocity profile and profiles of the pertinent
second-order correlations were arbitrarily assumed. For a given
choice of model parameters (in this case, a , b , and c, = A o,
where r  is the radius for which U« is one-half the e

centerline value), the free jet equations were solved for the
development of the jet downstream «f the initial distributions.

In all cases, essentially self-similar solutlions were obtained

far downstream of the start of the calculation. If a set of para-
meters could be found so that the resulting self-similar flow

agreed with experimental measurements with respect %o the rate of
spread, as well as with respect to mean velocity and correlation
distributions, it would then be assumed that a reasonable turbulence
model had been achieved.

Actually, such calculations were carried out for both free
Jets and two-dimensional free shear layers. With the single A
model, it was found that no combination ef parameters a , b , and
Cy could prcduce an adequate description of either a free jet or
a"free shear layer. In general, it was found that if the parameters
were adjusted so as to give an adequate rate of spread of the mean
profile (i.e., {r the level of the turbulent shear correlation
was large enough) the spra2ad of the correlations <uiu&> by diffu-

sion was always too large. This general result i1s illustrated in
Rigure 2 where it is seen that, il the general level of the shear
correlation {u'w') were to match the experimental data of
Wygnanski and Fiedler (Ref. 1l1) in the region of maximum shear,

it i3 clear that far too long & tail of {utw'™ at large r
would result. This was a very general result for free zshear [lows
and forces us to consider a more complicated model.

The difficulty that was experienced with the cvonstant
model was the eoxistence of too much diffuston relative Lo the rate
of loss of correlations, either by diszipation or the tendency
towards ifsotropy. To correct thiz difficulty in the studlea
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Fig. 2. Result of a free jet computation with a
single A model of turbulence
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reported here, the diffusion lengths A2 and A3 were made

smaller than A, . An idea of the effect of reducing the diffusion
lengths relatiVe to the isotropy length can be seen from Figure 3.
Here the rms value of the longitudinal velocity fluctuation w' ,
that has been calculated for several choices of model parameters,
is plotted versus radius in a self-similar free jet. Note that as
the diffusion lengths A2 and A3 (which are Cy times Al)

are reduced, the amount of diffusion is obviously reduced and the
levels of turbulence on the Jet centerline are appreciably increased.

D,

The effect of the choice of the scale of the isotropy length
A can be seen from Figure 4. The distritution of longitudinal
tﬁrbulence intensity is shown as a function of radius for two choices
of Al relative to the local value of r 5 It is seen that the

levels are much lower for the smaller Al than for the larger value,
This Is what one might expect because of the increased dissipation,
as well as the increased loss of shear correlation by the tendency
towards isotropy when the scale Al and, hence, A is made smaller,

vt e

o e A A

i The effect of neglecting pressure diffusion can be seen in
Figure 5; the longitudinal veloclity fluctuatlons in a free jet are
shown as a function of radial position for a given cholce of model
parameters a , b , ¢y » and Cqy for two choices of c3 . One

cholce is c3 P and the second is c3 = 0, {.e., neglect of

pressure diffusion. It 1s seen that for this cnolce of the other
parameters, the eflect of neglecting pressure diffuaien is not large.

Having given some idea of how some of the various parameters
entering the model for turbulent shear layers affect the solutiens,
we must now discusa the selection of anm actual set of parameters.

If one considers only a single type of shear flow that one wishes

to model, say, the free Jet, it 1s possible to choose a whole spactrum
of models which will give a good description of the mean spread

of the free jet and the distribution of, say, the lengitudinal
turbulent veloeity field., To illustrate this poini, we may refer

to Figure 6. Here we see that two profiles of longitudinal velocity
fluctuation can be eohtained with radisally different cholces of b
and A, . It 1 obzerved that if onhe chooass small b  one must
also e&oose a small value of A, relative to a characteristie scale
of the jet. What then 1s the b%si@ difference petweon these two
solutions? It is this. For the solution #ith small bt and small

A, , the balance ol the production af turbulenhce {8 more by digalipa«
t}on and less by diffusion than for the obther case. Also, Tor the
case of small b and small A, , the zolutions are #ore igolroplc
on the jet centerline than for the other case.

The ocholoe between the tws models exhibited 10 Figures & mual
te made on the baals of the degree of diffusion and lhe degtee of
isotropy desired (n the ecaleslated reault. Thie is a JiFTisuly
decizlon to make, lor exisiing experimental data do not agres al
to how fgotroplc free jets are offt thelr denlerdte 2, nd will be
seen presently. There 1d ahothur way that one ciny deelde between

19
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- on characteristics of a self-similar free jet
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Fig. 5. The effect of neglecting pressure diffusion
when calculating a self-similar free jet
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Fig. 6. Two choices of model parameters that yield

almost the same distributions of <w’'w’>
for a self-simiiar free jet
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two different models. If one uses the same model to compute two
differsnt turbulent flows having essentially different geometries,
the model which gives the best results for both flows is, since
we are seeking an invariant model, the one to choose.

As mentioned previously, we have computed self-similar
solutions for a free shear layer as well as for an axially symmetric
free jet. Actually a search for model parameters for each type
of flow was carried out. As a result of these studies, it was
detarmined that, insofar as the parameter studies have proceeded
at this point, the following model for free turbulent shear flows
gave the best results:

= 2.5
b = 0.125
e, = 0.10 (26)
03 = 0.10
Also, the value ¢y = Ay/6 . = 0.50 (27)

was found best for both flows, although it was not part of}the
plan to have a common value of ¢ As mentioned above, for the

free jet, 1
) =
char P.S : (28)
The characteristic length for the free shear layer was taken as
échar = Z.25 -Z.75 (29)

which 1s the distance normal to the flow in the shear layer from
the point where the velocity is one-quarter the external driving
velocity to where it is three-quarters this velocity.

In Figures 7 through 14, we show comparisons with experi-
mental data of the velocity correlation profiles computed for both
a free jet and a free shear layer, using the model parameters gilven
above. The experimental results are taken from the work of
Wygnanski and Fiedler (Refs. 11 and 12), Gibson (Ref. 13), and
Donaldson, Snedeker, and Margolis (Ref. 14).

Figures 7 and 8 show the longitudinal fluctuations in a
free jet and free shear layer, respectively. The agreement between
model calculations and experiment 1s good in both cases. For the
free Jjet in Figure 7, it would, perhaps, have been desirable to
have a little more diffusion (larger A, and larger b) in the
model In an attempt to reduce the overa&oot in w'w'> near the
centerline of the Jet.

Flgures 9 and 10 show distrilbutions of normal fluctuations
in both the frec Jjet and the free shear layer. Here we note the
agreement with experlmental data is not so good. There appears
to be a little too much diffusion for these cases. Also, hote

20
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Fig. 7. Comparison of experimental results and model
predictions for the longitudinal velocity correl-
ations in a free jet
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Fig. 9. Comnarison of experimental results and model
predictions for the radial velocity fluctuations
in a free jet
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the very large discrepancy between measured normal fluctuations

on the centerline as reported in three separate experiments. The
data of Gibson show the components of turbulent velocity to be
essentlaily isotropic on the jet centerline, while those of
Wygnanski and Fledler and Donaldscon, Snedeker and Margolis dc not.
From the results shown in Figure 9, it would appear that if one
were to desire more isotropy, one would wish to choose a smaller
value of A and, hence, a smaller value of b . This 1is opposite
to the conc}usion drawn from Figure 7.

Figures 11 and 12 show the sidewise components of turbulence
for the free jet and free shear layer, respectively. The agreement
between experiment and computed results is better for the free
jet than for the free shear layer. The reason for this behavior
is not known.

In Pigures 13 and 14, we show the shear correlations for
the free jet and the free shear layer. The agreement in both cases
is fair. It should be noted that the experimental values of shear
correlation from Ref. 11 have been shown as reported (the open
circles) in Figure 18 and also as corrected by us (the solid symbols)
so as to agree with the measured rate of spread of the free shear
layer. A comparison of the measured shear and that inferred f{rom
the mean veloctity profile was repeorted by Mygnansikl and Fledler
but apparencly thelr computations contained an errer. Also shown
in Pigure 14 is the lev:) of shear that may be inferred frosm the
mean spread of tre free sheae layer astudlied by Tollmlien (Ref. 19)
and Prandtl (Ref. 16) many years ago. It lg seen from the resulis
prosented in Plgures 13 and 14 that the model gives a falirly good
r@pr@sentation of the shear in both the free Jet and the [ree shear
layer.

& cateful study of Flgureg 7 through 1R shows that 1% really
i3 acocessary %o atudy further the prohles of choleed of medel para«
meters. However, befere thiz ig done, 1t appears deairable to
have 3% hand experimentszl data which one ¢an rely on to be truly
representative of the basic Tlow whieh is belng caloulated. It
i difrfieuwlt %o choose n wore sophisticated wodel until the gueation
F the degree of fsobropy on the centerline of a frec Jet 13 settled.
in addision, one should, at this point, determine i the wodel
Just found For {ree shear layers can be uged Tor » todel of the
Quter preglionsd of a boundary layer and give reasowable resulds.

Zelore turning to the problie® of the turbulent boundary layer,
it will be fnstructlve Lo Tind a reladlionship between the valued
of A, uzed In the free shear layer and the {ree Jet calculations
and tée goneral tagnitude of the integral scales meaduted Tor such
Flows., In the computationd that have been kade, 1% has dbeen adzdumed
that & is constant across a free jel or & Ire¢ shear layer at
any givéﬁ longitudinal pesttion and, in sagnitude, proportional
to the iocal seale of the fean Flow. It 18 well khown that the
integtal scales of sugh {lows are, in general, proporiienal $c the
ivcal sean dcaies but the actual value of the integral ssale varieg
across the layer.
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In Table 1, we present the values of integral scale within
4 free jet, as reported by Wygnanskil and Filedler. The integral
scale tabulated 1s ths longitudinal integral scale

L= ZETW%STEIT‘]: wt{zy)u'(z,)> d(z, - 2{) (30)

for the free Jet.
Table 1
Integral Scales in a ¥ree Jet after Wygnanskl and Fledlter (Rer. 11)

Radial Position Dimenslonless Scale Scale Ratloe

r/x L/r A/L

5 b

0 Q.448 .12

09 3.59% 0.84

190 0.726 0.69

.15 ¢.350 Q.53

.29 0.855 0.48
Also presented in Table | 23 the ratlo of the computatisnagt genbe
ﬂl to the local integrsl feale L . Thug, 2 typieal value for
this ratio for the {ree jet is

A;fg & 0,89 (3%

For the ree ahear layer, simlilar sezulss sre glves in Table
2. These euperimental valuss are zlso due Lo Wygnanskl sna Fledler.
The longitudinal integral dvale iw, is t¥ls case, delined by

&
¥ . . wtiy t7e A {n. = x2.1) 32
Q

Teble &

Integral Sealed in & Pree shear Layer alter Wrgnahdel and Fledier
vlell, 123

Lovation in Jet Dimensionless Scales Seale Batle
LA% n“f{:.es‘z'},s) ﬂlh,
Inner Region 0.0%8 0.888 $.49
Center 0.:03 0.883 {57
Quter Reglon 0.147 1.27 .39
30
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A typical value of Al/L for a free shear layer appears to be
approximately

AL/L = 0.55 . (33)
As mentioned previously, there 1s not much point in going

further with studies of the present model until it has been applied
to a boundary layer. Note should be made at this point, however,

- of other methods of calculating turbulent shear flows - methods

that are similar to the methods being discussed here. As mentioned
before, the idea behind the method is not new. It follows a trend
suggested by Prandtl and Wieghardt (Ref. 1) and follows closely . .
the general line of approach taken by Rotta (Ref. 6). Since these
two pioneering papers, many more or less similar studies have been
undertaken. Typical of many such studies are those of Glushko
(Ref. 18), Bradshaw, Ferriss & Atwell (Ref. 19), Harlow & Romero
(Ref.20), Gawain & Pritchett (Ref. 21), and Beckwith & Bushnell
(Ref. 22). The more sophisticated of these methods do not assume

a local scale, as we have, but carry along with the computational
scheme an equation for the required scale. Such an equation was
derived by Rotta (Ref. 6) from the equation for the twe-point
correlation tensor <:ui(A)u5(B)> . There is no question but that,

in the future, the method presented here should-be enhanced by
coupling the present set of model equations to an equatioan for the
integral scale. To date, however, we have avoided making this
connecZion in order to study the character of the model and its
dependence on the scale A without this dependence becoming inex-
tricably mixed with the adéitional modeling that must be done in
the equation that is used to compute a scale.

Before proceeding further, it must be demonstrated that,
if the present model is applied to a boundary layer, useful results
will be obtained for the same choice of model parameters that has
been made for free turbulent shear flows.

31




V. APPLICATION OF MODEL TO BOUNDARY LAYERS

If the model of turbulent shear flows 1s to be applied to
a boundary layer, the parameters C5 5 c3 , & and b are known.

But, since the characteristic length in a boundary layer is arbitrary
(as it 1s in the free jet and the free shear layer), we are at

liberty to choose ¢, , 1.e., the ratio between A and the charac-
teristic length (whi%h, in this case, we take equa} to o 99 * the

thickness c¢f the layer in which the velocity reaches 99% of its
free stream value),

As discussed in a previous section of this paper, one other
parameter enters the problem, namely, a , the coefficient appearing
in Eq.(21). We have, then,

A = ava z _ (34)

for 0z g eqd 99/(av"§) , and
Ay =10 99 | (35)

for z > 016.99/(a/§)

With only these two parameters o and ¢ to determine, the search
is not difficult., The model that has be%n found is the following:

a = 2.5

b = 0.125

¢, = 0.1

e (36)
03 = 0.1

¢y = Al/c’i.99 = 0.15

a = 0.7V a = 0.443

The abllity of this model of a turbulent shear layer to
predict the known mean properties of turbulent boundary layers
15 shown in Figures 15 through 17. In Filgure 15, we show the skin
friction developed by our model as 1t proceeds from a disturbed
laminar layer to a fully turbulent layer. Also shown are the lami-
nar skin friction law and the turbulent law proposed by Coles
(Ref. 23) which is a good fit to experimental data. It 1is no great
surprise that the general levels of skin friction we computed agree
well with experimental findings inasmuch as the values of a and
¢ were chosen to get these levels correst. Of more importance
i% the nearly exact following of the trend of skin friction with
Reynolds number by the model computations.
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Figure 16 shows a comparison of tihe computed mean velocity
profiles developed by the model In the vicinity of the wall and
the well-known law of the wall as proposed by Coles (Ref. 23).

It may be seen that the law of the wall is not quite achieved by
the present selection of model parameters. The results, however,
are sufficiently accurate to be encouraging.

G

In Figure 17 we compare the experimentally determined velocity
defect law proposed by Coles (Ref. 23) with the results of our
model computations. It is seen that, once the turbulent boundary
layer is well established, the computational model givegs a fairly
good representation of the outer regions of the turbulent boundary
layer.

With these results in hand, we must now consider the relation-
ship of the computational scales used to the longitudinal integral
scales that are found in the outer regions of turbulent boundary
layers. For this purpose, we may use the measurements of Grant
(Ref. 24). When the experimental correlations reported by Grant
for y/8 = 0.66 * in a turbulent boundary layer are integrated to
glve theolongitudinal integral scale, one obtains L/éo = 0,3

Since for our calculations, éefé.gg = 0.83, we find that
L../é‘99 » 0.29 . Since the computational pcale used was Alfé‘gg =
0.15, we find that

8 /L = 0.8 (37)

Thia 15 a most welcome result sinee 1t shows that, far all the
turbulent flows we have investigated, the ratio of the proper compu-
tational scale to the longltudinal integral scale is approximately
the same.

*Grant defined @ as thut height in the boundary layedr where the
veloclty defect liw was equal %o the friciion veloeitly.
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VI. CALCULATION OF ATMOSPHERIC TURZUT.LNCE

We may now turn to our original problem, namely, that of
computing atmospheric turbulence. 1In Ref. 2, .he equations for
the generation of atmospheric turbulence were givea and computa-
tions were made for some simple shear layevrs, using the originally
determined model parameters [Eqs.(24)]. The model equations for
the calculation of atmospheric turbulence using the latest
modeling are given in Appendix D.

In what follows, we will turn our attentior to a calculation
of a case for which atmospheric turbulenc» has been observed and
measured by an instrumented alrcraft and ror which data were
taken on the mean state of the atmosphers nearby, at a time
reasonably close to the time of the otsecvation.

In searching the records available from the LO-LOCAT Phase
III atmospheric turbulence study, 1t was decided that an appropri-
ate LO-LOCAT run on which to make our study was leg 5 of Test U3
(Category #422224). In PFigure 18 we reproduce from Ref. 25 the
normalized atmospheric spectrum ¢, determined from this particu-
lar leg of Test 43. The spectrum is complete enough so that bath
the turbulent inteasity and a longltudinal intogral scale can be
estimated. We shall treat this spectrum as & partial spectrum,

y i 2
f.e., as if only the %(Q) - Q7 - pover portion of this spectrum

was available. Using enly this Information and the informatioen
avallable from the atate of the atmosphere, we wiil attempt to

estimate the values of O Nw/k#'wf} cand L by caleulation of
the turbulence that c¢an bg praduced by the atmosphere for various
values of the seale L .

The log for thias £light leg on 20 Septoember 1968 shouws
{Rer. 26):

Time Rid-moprning
Alrapeed {“rue) _ 614.,7 Peet/aex
Altivude 7 TI5.7 Feet
Amblent temperalute 64.0°8

Grountd Letperature 2.71%¢

Wind A.eed 33.9 eevisec

Wind irection (true) »
at %0 feot 169°

The 3tate of the winds al %the Flight altitude i ahown in Figure
39.
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Fig. 18. Normalized power spectrum for Test 43,
Leg 5 (Ref. 25)




Aircraft - 615 ft/sec
heading 348° true

Wind- 33.5 ft/sec
from 169° true

Rg. 19 Wind and aircraft velocities at flight
altitude, Test 43, Leg 5 (Ref. 26




Meteorcloglical data gathered at 0900 hours local standard time
on the same day at a point about 15 miles from the flight leg are
avallable (ief. 27). These data have been plotted in Figure 20;
shown are mean velocity and mean temperature measurements deduced
from the data, with lines faired through the points to define an
atmospheric mean velocity and mean temperature profile. Also
shown are the ground temperature and ambient {at 750 feet) temper-
ature and wind velocity as recorded in the flight test log. The
considerable discrepancies are to be expected, given the distance
and time intervening.

In Figure 21 the temperature profile has been replotted to
show the departure of the local temperature from an adiabatic
temperature profile. It will be seen that the tenmperature profile
is such that it is unstable from the ground to a height of some
900 feet; thereafter the temperature profile is stable in the
region of interest.

Using these profiles, the equations for the development of
atmospheric turbulence presented in Appendix D can be solved for
the turbulence that will be generated. The only free parameter
in the model is the computational scale A; . From the discussion
presented in previous sections, we will assume, for these calcula-
tions, that this scale behaves as follows,.

Near the ground, the scale Al is given by the formula
A=avazs= 0,7z

It will behave in this manner until it reaches some arbitrarily

assumed upper limit A§ . Above this altitude, Al is assumed to

be constant with altitude and equal to A} .

Although we know that the integral scale and, hence, the
¢omputational acale Al generally Ilncrease with altitude, it is
believed that, since we are interested here in a computation of
turbulence in only the lower levels of the atmosphere, the assumpe-
tion of A constant above the level of large ground interaction
will be adequate.

Computations were carried out for a range ol values of A
egual to 60, 100, 200, 300, and 400 feet. In Filgures 22 and
23, the profiles of Ju'u*d ,{v'v™ [ (w'wD , and the shear
cerrelation {u'w®™ are plotted as a function of altitude for

values of A{ of 100 and 200 feet, respectively. For completeness,

we alse show in Rigures 24 and 25 plots of the profiles of the
temperature flux correlations {u't? and (W'T'D as well as values

of the temperature variance (T'2> .
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Fig. 20. Reported wind and temperature values from
Ref. 27, along with test leg values (Ref. 26)
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If, from results such as those plotted in Figures 22 and

23, one determines the values of ou =<{utyt v <v'v'}l/2 s

and O, = <w'w'>l/2 at the flight altitude (750 feet), a plot of

these values as functlons of the outer integral scale A¥ can be
constructed, Such a plot is shown in Figure 26. The véry
pronounced effect of the scale A¥ on the magnitude of the turbu-
lence that can be developed is eXhibited.

We must now compare these results with the spectral results
already discussed., In comparing the three values of A%/L_

determined previously, namely, 0.69 for the free jet, 55 for the
free shear layer, and 0.60 for the boundary layer, we select the
relationship
= ¥ =
Al Al 0.60L

as representative.

In Figure 27 we show Gw again as a function of Ai as in
Figure 26 and as a function of L . Also shown is a curve of the

relationship between a« and L [0 ~ Ll/3 , according to Eq.
(5)] obtained from the gpectrum show!l in Figure 18, treated as

a partial spectrum. We note that the two curves intersect at

0 = 3,0 ft/sec and L = 290 feet. This may be compared with the
results obtained from the complete spectrum (Ref. 25), namely,
g, = 2.84 ft/sec and L = 273 feet.

The remarkable agreement between these results must be
considered fortultous in view of the many uncertainties involved
in constructing wind and temperature profiles for input to our
program from the few measurements points available and, more
particularly, in assuming these values apply some 15 miles away
at a different time. The discrepancies shown in Figure 20
between the two sets of measurements give an indication of the
validity of our results.

Although the agreement we have just found is better than
expected and, certainly, additional calculations of the type we
have just presented must be carried out, we do believe we have
demonstrated a method of computing atmospheric turbulence that
has sufficient merit to warrant further investigation and
development. The other conclusion that one can draw from the
calculation that we have presented 1s that, in the future, it
would be most desirable to expend every effort to obtaln measure-
ments of the mean state of the atmosphere as close in time and
space to any achtual flight measurements of turbulence as 1s
possible.,
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VII, DISCUSSION AND CONCLUSIONS

We have in this report presented a method for calculating
turbulent shear flows that depends on the closure of the
equations of motion at the second-order correlations of fluctuating
quantities. This closure is accomplished by modeling the appropriate
terms in the equations for the second-order correlations in terms
of simple invariant expressions involving the second-order
correlations themselves and several scale parameters. By comparison
of computations with experiment, the relationships between the
various scales were determined and the relationship of these
scales to the integral scale iIn the turbulent flow that was being
calculated was found. It was found that the basic scale Al used
in the computation was approximately equal to three-fifths of
the longitudinal integral scale of the turbulence under consideration.

Although 1t should be pointed out that more computations must
be made before a final choice of model and model parameters is
made, 1t is clear that some of the inconsistencies in the presently
available experimental data on free turbulent shear layers should
be cleared up first.

Once a turbulence model had been exntablished and a relation-
ahip found between the computational scale used and the integral
svale of the turbulent motien under consideration, the method was
applied te the preblem of obtaining, from partial atmespheric
spectra, an estimate of the total turbulent intensities and the
integral scales. By applying the methed to a case of low altitude
turbulence where the spectrum was complete enough to determineg
both the intensity and scale of turbulence but treating the
speotrum a8 1¥ 1t were incomplete, 1t was found that the magnitude
of the turbulent intensity and scale could be evaluated 1 the mean
wind and tetperature profiles were known.

Although the method appears Yo woprk well, further studles of
this type should be performed. AL the present tlme, 1t 12 felt
that the technique that has been developed 1s of surficient interest
to warrant support for these additionsal studies. An iaportant part
of these studies would be an application of the method to high
altisude turbulence where the magnitude of the integral scale ia
nel Known,

in contieetion with such sludies of high altitude turbulence,
it 13 sirongly recotnmended Lhat all possible offert be expended to
phtaln Gean adanspheric wind and Yemperalure data a8 vloge in
space and time to the actual #measuretsent of turbulence ay g
poszible.,
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APPENDIX A. CONSTANT DENSITY MODEL EQUATIONS FOR STEADY FLOW
Continuity:

t' . =

§ u’J 0 (A.1)

Momentum:

f

- - - Jk— ' ,
udui»J " Pt (g “i,k),d - <! uP g (A.2)

O |

Stress tensor:

ugup o= =<l §y -l g

g [Aeq(<“i“é>,k +ugued g4 <“i“fc>,z)_],3
[A3Q <u£'uj'_) ,3],k + [A3Q (txg'u;(),ﬂ],i

t 1 4 K 'g 1 L
%’1'(@1“;«) - By ?) * "[SJ Qujupd 44 =2

+

+

]

(uiué}
xg
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APPENDIX B. MODEL EQUATIONS FOR A BOUNDARY LAYER

We use a Cartesian coordinate system (x,y,z) with the free
stream veloclity in the x-direction and with a as the coordinate
normal to the wall. The veloclty components are denoted by
(u,v,w). With the usual assumptions for a constant pressure
boundary layer, Egs. (A.l) through (A.3) become

a_x_.p.a_.z..a 0 | (B-l)

30 ., - du 3% _Xutw'D
z a 2 32 (B.g)

G N g..(aq_@;xi) (5.3)
JX 4

v,

2 Tyy b Syt t
- & (¢uru® - 3) w(a Quud 2\u2u>)

1 3z A
(B.3)
5 <v'v'2 E'i__‘.: i %;(Aaq . v' )- %((v‘vQ - %)
NERED PR {B.4)
2¢ AS |

- &/w W'D '-; o ! A 34'\3 + 2A )Q 552'—::)—:] - %1-(<h"w'> - g\')

N E O DR I .
49(322 - Aa {5.5)

?“—"'— v ""’-}- - -Cewd S a“ f( 20, + Ay)0 EM—D-]

- L(u'w'} +v(>‘ 3CutwD 2(11%"’)) {1.6)

3z° A
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APPENDIX C, MODEL EQUATIONS FOR A FREE JET

We use the cylindrical coordinate system (r,8,z) with the
velocity components denoted by (u,v,w), respectively. The
assumptions for a constant pressure boundary layer are again
applied to Egs. (A.l) through (A.3), along with the assumption
of axial symmetry, giving

ot

U, U, W
r ot 3z 0 (c.1)
130, g, 2%, 1) | Xuwd  unwd
u3r+w52 v(5r2+1‘ r> 3r r (¢.2)
=3u'uD - Xuu _ 3 ddutu®>
Yo o dz ar (38, + 2A3)q r

r

+ %g——l‘%q((u'u') - (v'v'))]
(U, + 20,)q

- _7_3_ (<utu|> - <V'V'>)

ot K 32 Y LYORL
-%—1‘(<u u --3-)+v[ar§“ uD %5§““>

- f? Kutud - Cvrvd) - 3‘:'“' ] (¢.3)
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2A.q Ty !
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(4A2 + 2A3)q

+ 5 Kuru®» = vrv D)
r
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APPENDIX D, MODEL EQUATIONS FOR CLEAR AIR TURBULENCE

As In Ref, 2, we simplify the problem somewhat by assuming
the mean flow is in the x direction only and that all the
dependent variables are functions only of time t and altitude

: The convectlve operators in the steady state equations
uJ(B’ ,j) are replaced by 9/9t ,

In considering atmospheric motions, we include buoyancy terms
and temperature terms that induce them, We take the actual mean
temperature to be the sum of an_adiabatic temperature T,(z) and
a departure therefrom denoted T(z,t). The density corrésponding
to the adlabatic temperature variation is denoted by ¢,(z) and
we write

The equations before modeling are glven in Ref., 2, With the
current modeling, they become

3 325 e LutwD)

Po 3t ¥ 5,2 T 3z (D.1)
3T 337 9pLw'T)
Po 3% =LL322 Y (D.2)
Xu'u> N U L 9 Xutu
Po 3t = =2pCutu’> S+ = (s )
P 2 , , ‘
- K‘;— (<u'u'> - -) + 5 <u u'p e(;zau'>) (L.3)
viy |\ a agv v|> O Lot - 5
Po g—i— =37 (90‘\8‘4 ) "y ((v v 3)
n u(a?(v;v') - 24""">) (0.4)
az(; xé
ap Yot
Po T‘~”<”""'> -3 [ (31, + 23 q -—~5—-—‘\’<:’;“'>] +2 52 aq E’%"a‘ L

p q { é ot '\ vty l\
N ((w'w') - &) +u ) <ng 2 “(w“m,
! 3 dz"

k,:.

r \E N
- 2+ M*)(%‘g )(w'w') $ e KWIT D (DeH)

T,
55




po BEHLZ = - plutn®> L+5 [PO(ZA Ths 'a%—w)]

a<‘U.'W'> qu <U.'W'>

+§_— 3q oz l
2 oot
" [8 <u2'w!> _ 2<u2w >] - (“' + U-*) (%g - 0_2) <u'w'>
oz A
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B g ey B ny B (s K5
q 2 1Tt tm
1 oz A

Xw'T . 3T . d wIT!D
po L2 =« pwiw> § + 55 [%4"‘“2 +hg)a éﬁa—z—]

Pl (W't + u<82<w'T'> . 2’-<N'T'>)
‘2 2]
1 32° A€

3a 2\ ~ Pe8 . "
- (n o+ u®) (&8 - 0%) wr T + m— LT (D.8
) (82 - %) T )
: 1 IZ r \|
po a T T = - ‘;p <N.'T\'> C)'I a (po‘\qq r{? )
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In these equations, u“ ig thn secvond =moefficient of viscosity
and g 48 the acceleration of gravity.
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